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Abstract—A lineur theory is developed for axisymmetric deformation of thin poroelastic shells of
revolution. With Hluid-solid coupling included through Biot's consolidation theory, results are
presented for cylindrical shells with an oscillating internal pressure and various surface boundary
conditions on the fluid. First. the effects of fluid flow and shell inertia on the stretching behavior
are studied through a separation of variables solution. Then, the bending behavior near a clamped
edge is examined through an asymptotic solution of a matrix form of the governing equations. The
results show that the asymptotic solution is accurate in the low frequency range. when the loading
time is large compared to the consolidation time. In addition, for the examples studied, the fluid
flow influences the membrane more than the bending behavior, but damping due to flow resistance
is limited near resonance.

INTRODUCTION

Muny biological structures, such as hearts, blood vessels and bladders, can be treated as
fluid-saturated porous shells. Analyses of these and related engineering problems would be
facilitated by a poroclastic shell theory, which apparently is not yet available, Laying the
foundation for more general theories, this paper presents a set of lincar governing cquations
for axisymmetric deformation of thin poroclastic shells of revolution,

Related work based on three-dimensional mixture theory has focused on nonlincar
diffusion through thick-walled tsotropic eylinders (Gandhi er «f.. 1987), orthotropic
eylinders (Dai er of., 1991) and transversely isotropic spheres (Dai and Rajagopal, 1990).
In addition, using the lincar consolidation theory of Biot (1941, 1962), Kenyon (1976)
studied fluid-satarated poroclastic cylinders subjected to steady and step pressure loads,
and Jayaraman (1983) examined cylinders with an oscillating internal pressure. In two-
dimensional formulations, Rujagopal e «f. (1983) derived nonlinear membrane equations
from the theory of mixtures, and Taber (1992) generalized the one-dimensional analysis of
Biot (1964) 1o obtain a lincar plate theory based on consolidation theory.

The present formulation extends and combines the lincarized version of the nonlincar
theory given by Reissner (1950) for shells of revolution and the linear theory for poroelastic
plates given by Taber (1992). The shell theory is based on the following assumptions:

(1) The shell is “thin™, e, R, >» |, where R is the smallest midsurface radius of
curvature and /i, is the shell thickness.

(2) Displacements are small compared to the shell thickness.

(3) Normals to the middle surface of the solid skeleton (= = 0) remain straight and
normal during deformation. (Transverse shear deformation is ignored.)

(4) The plate is in a state of approximately plane stress, i.¢. the toral stress 1. = 0.

(5) In-plane fluid-velocity gradients relative to the solid are small compared to the
transverse fluid-velocity gradient.

The first four assumptions arc commonly employed in deriving shell theories, and the
significance and validity of the last assumption are discussed by Taber (1992).

Based on this theory. results are presented for shells with oscillating internal pressures.
Using a separation of variables solution, we first explore the membrance behavior of cylin-
drical shells with end cffects ignored. Next. the governing cquations arc expressed in the
form of a first-order vector cquation, and an asymptotic solution is developed using the
procedurc of Stecle and Skogh (1970) for shells of revolution. Results are given for a
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clamped cylinder with various surface boundary conditions. and the two solutions are
compared in the shell interior.

POROELASTIC SHELL THEORY

In deriving the governing equations, our procedure is similar to those of Reissner
(1950) and Taber (1992). Thus, here we omit some of the specific details, with the interested
reader referred to those papers.

Geometric relations

Consider a thin poroelastic shell of revolution with axis of symmetry 1 (Fig. 1). Let
u(s, z. 1) and u.(s, c. 1) represent the displacements of the solid and fluid. respectively, where
s is the meridional coordinate along the middle surface, - is the distance from this surface,
and ¢ is time.

During an axisymmetric (torsionless) deformation. a middle-surface element at a radius
r and meridional angle ¢ undergoes a displacement u(s, 0, t) = we.+uwe, = he, +re, and a
meridional rotation x. (Figure | shows the unit vectors e,.) The geometry gives the relations
between the displacement components

= ucosp+wsing, v =usind—wcos. (1)
Under assumptions (1)-(3). the strains in the solid skeleton are
Cp = Ly +IKy, Oy =8yt IRy, 2)
where the middie surface striins are
gy =N cosp+v'sing, & =hir (3)

and the curvature measures are

dP)

Fig. 1. Poroclastic shell gcometry.
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Ko =X's Ky =YCOSQP/r )

with prime denoting differentiation with respect to s. In terms of displacements, the rotation
is

X = u/rl—-w', (5)

where r, and r. are the meridional and circumferential radii of curvature, respectively, and
the geometry gives

ds=r,d¢, r=r,sing. (6)
Here, we also define the fluid filtration
{=dile—er) (M
and the solid and fluid dilatations
e=Vu=¢,+e,+e.. e =Veu, (8)
with ¢; being the porosity and e. the transverse normal strain.
Equilibrium

In terms of the total stresses 1,(s, 2, t) (per unit arca of bulk matcrial), the stress and
moment resultants are (Fig. 1)

(N¢' N”v Q) = J(r¢v tlh rdt:) d:'

(My . My) = I(Tw 7y)zdz, )]

where | = j’"_‘fﬁz, Following Reissner (1950), we express the equilibrium equations in terms
of the horizontal and vertical components of the stress resultants

H=N,cosp+Qsing, V=~N,sinp—0cos¢ (10)
and the (middle) surface tractions

Pu =Pycosp+p.sing, p,=p,singd—p.cosg, (1

where p. and p, are the normal and tangential loads per unit bulk reference-surface arca.
Then, the equations of vertical force, horizontal force and moment equilibrium are
(r¥y = —rpy,
(rH)Y = Ny—rpy,
(rM,)y = Mycosdp+rQ. (12)
Constitutive relations
In terms of the total stresses and the fluid (porc) pressure pr. the three-dimensional
constitutive relations are (Biot and Willis, 1957)
1y = 2ue, + e —apy,
Ty = 2uey+ Ae—apyg,

SAS 29:24-F
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T, = 2ue. + e —ap;.

pr = F({—2e), {13)

where £ and u are the Lame constants for the solid skeleton. x characterizes the com-
pressibility of the material comprizing the solid skeleton relative to that of the. drained
skeleton, and Fis a modified fluid modulus [see eqns (32) and (33)]. Biot and Willis (1957)
showed that ¢; € x < | and that, for incompressible solid and fluid components, « = | and
F = x. Note also that the fluid-solid coupling disappears if x = 0 (no pores) or if pr=0
{no fluid).

Fort. = 0 (assumption4).eqn (13), [with (8),] is solved for ¢, which is then substituted
into (13), , to yield

E
T, = T—v: {ey +vey)— Bap,,

E
Ty = [ (eo+ve,) — Bapy. (14)

In these equations. Young's modulus E, Poisson’s ratio v, and B are material constants for
the drained solid skeleton (g = 0) (sce Table ). After substitution of eqns (2) and (14)
into (9), integration over the shell thickness gives

Eh,
N, = [y (£, 4 vey) + BaN,
Eh,
N, = [y (g +viy) + BaN,
M, = Eh e (K + viy) + BaM,
M, = [:'fz\('z(:{,,,-{»—w\‘.ﬁ)%- BaM, {5

where ¢ = 11/[12(1 =v?)]" *is the reduced shell thickness and

N = —J‘p{-dz. M= —jp;»: d= (16)

are the hydrostatic force and moment resultants due to the fluid.

Fluid flow
In three-dimensional consolidation theory, the flow of viscous fluid through a porous
clastic solid 1s governed by Darcy’s law (Biot, 1941, 1962)

Table 1. Muterial coetlicients

E _ Sl + 1) ;= /
1—v? i+ T2(h4n)
B 2 :
24 1 - 2v x !
p= "t - v f e
O T -y B=isutr
k B

K= -—
wft B
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k
—Vpr = ¢ —1p), an
He

where 4 is the intrinsic permeability, u; is the fluid viscosity, and dot denotes differentiation
with respect to time. Taking the divergence of eqn (17) and using eqns (7) and (8) gives

koo

f

Next, substituting eqn (8), and the expression obtained by solving (13), for e. (with t. = 0)
into (13), gives

{ = Bpc+aBle, +ey). (19

where f} is defined in Table 1. Finally, assumption (5) and eqn (17) imply that the term p;..
dominates V*p, where comma denotes differentiation with respect to the follower coordinate
[see Taber (1992)). Thus, putting eqns (2) and (19) into (18) yields the fluid flow equation

Kpf.:.‘ = ﬁf +f+ :g* (20)
where

Ss.1) = Cleg +8),
g(s.1) = C(ky+K4) 2n

and the effective shell permeability K and the material parameter C are given in Table 1.

Asshown in the plate problems considered by Taber (1992), strong transverse gradients
in py can occur. Thus, eqn (20) is not integrated to produce a resultant form. Solutions to
this equation for various surface boundary conditions are given in Appendix A.

CYLINDER WITH OSCILLATING PRESSURE

Analysis

The governing cquations for a poroelastic cylinder are derived by setting ¢ = n/2,
ry = r = constant, and r, — c0. Then, combining eqns (1), (3), (4), (5), (10), (12) and (15)
yiclds

> E/; l -
Ehcih™ + -75'— h=py— : V+ Ba(M”— —r—”~ N). (22)

For « = 0, this equation reduces to the standard cylindrical shell equation.

To gain insight into some fundamental behavior, we study a cylinder with a harmon-
ically varying internal pressure p(r). The ends of the cylinder are closed (V = pr/2 from
axial equilibrium), but end effects are ignored. In this case, axial derivatives vanish, and,
with transverse inertia included in p,,. eqn (22) reduces to

. Eh v l—v
“h= -] R 2
ph+ h p(l 2) Ba( - )N, (23)

where p is the average mass density of the bulk material per unit area of the middle surface.
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Table 2. Nondimensional quaatities

AT . . s
r.=<l‘_?) CR=(r), @ =20V ez
-‘____': r‘=—r— r‘.=2
- h‘ ’E
.—1, w.zw_hf p.sz:ra
r= h_f K Ehlc?
\* ﬁ’¢ - HSin¢° 1 = 4
{* = Ehe cEh, Eh,

h
xt =gy h* ;‘ K* = hK,
. N MY = M ru=L
= ¢Eh, ¢Ehc T
i =) /‘=”RE a‘=y—lE
LT = AN B E/l‘ £ E
. . , R
= %;_?i (p*. pliae PRo. PT2) = E-;; PPy Pes Pr2)
1, .
sing ._ CR:
S = Gne. Eh,
Table 3. Eigenvalues and cigenfunctions
BC ir $ha b,
A v
| nn 0 sin_Jcos Av=*+cos 5 SinATs®
m-1)n . Ay b
2 5 0 sin " cos PASAE U INET ety
i A
3 nn l cos " cos Avz* +sin 5 Sin Phodd

In terms of the nondimensional quantities defined in Table 2, eqn (23) becomest
Pt +h* = p*(1 —v/2) — Bae(1 —v)N*, (24)

where & = (¢/r)""? churacterizes the shell thickness.

The fluid stress is given by the solution in Appendix A, to which the following refers.
For an oscillating internal pressure g, = p = p,e™”’ (f, = 0), with p, a rcal amplitude and
w the frequency, the steady-state solution is taken in the form

(LN, Ay a,, \mef) = (hy, Ny, Asp. dno. \P(tf)» fu)"muv (25)
in which the sub-zero terms are complex. Inserting this equation into (24) and (A9), yiclds

ho(1 — p*) = po(l —v/2) — Bae(t —v)N,,
No = —a(Z 4,,0 +¥), (26)

+ Throughout the remainder of this paper [after eqn (24) and including the appendices and figures, but nor
the tables). unless stated otherwise, the nondimensional variables in Table 2 are used with the asterisks removed.
In some cases, however, the asterisk is kept for emphasis. In addition, prime and dot denote differentiation with
respect to s* and (*, respectively.
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Table 4. Terms of fluid pressure solution

BC (D:'m (D:.” \P(ln \P( lH
1 (2205 (A9~ c(25— %) Pt +pY) #(pI-p7)
2 20087 's? — (i 525~ A%) b
K] 0 (A% s(2s—i%) 0

s=sin (A32). c=cos (4%2)

where T = ”go and Table 4 gives ®¥ and W{’. Furthermore, eqns (AS)-(A7) provide the

Aq. with £, and g, given by (3).. (4). (15), with N, =V, and (21). For steady state
(t = x). integration of (A5) then gives

Ao = Gnun() N
Wi[h 14()() = 0 'dnd
= fw
" 4o’
e = = 2[(7,p0 +f(,)(bf,m+5|p(,(bf,”].
Jo= (“:/24)C(l’n —=2BaNy) + C(1 —v)hy, (28)

where the 4, (= 4% arc given in Table 3, and eqn (A4) provides y, and J,. Now, after
substituting (27) and (28) into (26), the latter equations can be solved for g and Ny The
result is

o _ 71 =v/2) 4 Bae(L =) [po ~ 262y + Ca’/ 12007 + 25, 8.1,

= 2 : 2 T (29

Po (1 = pw?) 4 2CBae(l —=v)* 2 G0 )

N, X I: v hy .

= =[Bre(l =v)] | 1= 2~ = (1 =pw?) |,

P (B ] 2 py P
where

y=a"'+2CBx(1 —v) G, 0" (30)

Results

For a cylinder with an oscillating internal pressure p(r), three sets of surface boundary
conditions (BC) on the fluid are examined [see eqns (A1) and (A4)]. These conditions cor-
respond to specified internal and external pressures on permeable surfaces (# 1), on a
permeable inner and impermeable outer surface (#2), and on two impermeable surfaces
(#3).

In choosing parameter values, we first note that (A+2u)/E = (1 =v)/[(1 +v)(1 =2v)],
and so the relations in Tables | and 2 give

. -
. {[(l o2l __vz)]l/:](al ¥ ».+F2u>} ‘ 31

which characterizes the fluid-solid coupling [sce egns (20) and (21)]. In addition, Biot and
Willis (1957) showed that

F= [¢r((’r—C,)+C!1]—l, (32)

2= —Cs/cxlu (33)



3432 L. A. Taser

]
%3]
<
I
a
5
W
Q
=
<
4
o
=
o
O _1 1 1 J
0.1 1 10 100
FREQUENCY

Fig. 2. Mugnitude and phase of compliance (A/p) as function of frequency {w) for poroclastic
cylinder with oscilluting internal pressure. With end effects and inertia neglected, results are shown
for three sets of surface boundary conditions [see eqns (Al) and (Ad}].

where ¢, ¢, and ¢; are the compressibilities of the solid skeleton, the material making up
the skeleton, and the fluid, respectively. Here, we consider an incompressible fluid (¢; = 0),
and so

F=lea—=e]"". 34)

Equations (31) and (34) show that C* is maximum when o = ¢, and, therefore, F = c0.
In this case, the fluid effects grow more significant (C* increases) as the porosity ¢ grows
smaller (farger flow resistance). Note, however, that eqn (31) now gives

Crae = {(1+v)[1201=v})]" 2} 1, (35)

which appeirs as a grouping in the primary flow resistance terms of eqns (29) and (30).
Thus, for a given v, due to this constraint on the parameters, the shell thickness parameter
¢, the relative solid compressibility x, and the fluid-solid coupling coefficient C* have limited
effects on the dimensionless membrane-type compliance hy/py. Unless stated otherwise,
therefore, the results in this paper are based on the following parameter values for incom-
pressible fluid and solid components (¢, = ¢, = 0):

e=001, v=01, a=1, F=oo, p=0.

(Note that, although the solid component is incompressible, v # 1/2 for a porous skeleton.)
Also, we found that five terms in the series yield sufficiently accurate results for the range
of frequencies studied here.

With inertia neglected, Fig. 2 shows the frequency dependence of the magnitude and
phase of the compliance /1,/p,. For BCs # | and # 2, the response resembles that described
by Okuno and Kingsbury (1989) for harmonic loading of a poroclastic slab. At low
frequencies,t the fluid flows relatively freely through the shell wall and has little effect on
the solid displacement, which approaches the elastic value (io/p, = 1| —v/2 = 0.95). At high
frequencics, the fluid flows little against high resistance, with the fluid pressure building up
in the wall (Fig. 3). Through most of the wall, however, the pressure is out of phase with
the displacement (and the internal forcing pressure), producing a suction effect as the wall

+ The characteristic “consolidation time™ is t = #}/K, and Table 2 gives * = wt. Thus, "low frequency™
{small =*) corresponds to a loading time that is Jarge (@ small) compared to the consolidation time.
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Fig. 3. Fluid pressure distributions in poroclastic cylinder wall.

moves outward. This suction draws the solid skeleton inward, reducing the compliance.
The transition between the low- and high-frequency regions, which occurs when the fluid
flows against an intermediate resistance. occurs at lower frequencies for BC #2 than for
BC #1. For BC # 3. fluid cannot icave the wall, and the cylinder behaves essentially like
an incompressible shell at all frequencies, with the Auid unable to flow much and having
little effect.

The negative fluid pressure at high frequencies (Fig. 3) resembles that found by
Jayaraman (1983) for a thick-walled poroclastic cylinder with an oscillating internal
pressure.t He described the boundary layers that develop near the shell surfaces as the
frequency increases (@ = 100 in Fig. 3). For a step pressare load, Rice and Cleary (1976)
discussed a similar phenomenon, When a step load is applied, the solid skeleton instantly
deforms clastically, and the pores open before the uid can flow, producing the suction
effect. For small time, the surface boundary conditions on the pressure induce the formation
of the boundary layers, where most of the fluid flow occurs duc to the steep pressure
gradients. Note also that the small fluid pressures for BC #3 contrast with the high
pressures found by Taber (1992) for bending of a poroclastic plate with impermeable
surfaces. This illustrates the difference between membrane and bending behavior. While
little flow occurs during membrane stretching in this case, bending allows fluid to shift from
the compressive to the tensile side of the wall.

The total hoop stress (Fig. 4) illustrates the combined effects of the deformation and
the fluid pressure. As the frequency increases, the decreasing radial displacement and,
therefore, hoop strain produce a lower “contact™ stress, which is the stress in eqn (13),
independent of p,. While the negative fluid pressure increases the total stress in the shell
interior, the peak total stress remains at about the sume level as for the case of no fluid.

Finally, Fig. 5 shows the effects of shell inertia for p = 1. Near the resonant frequency
(w = 1), the fluid resistance damps the deformation, but the magnitude of the damping is
not dramatic. At high frequencies, the inertia dominates the response, with the displacement
approaching zcro.

MATRIX FORMULATION

For general boundary conditions, even for the case of a cylinder, closed-form solutions
such as eqn (29) are difficult to find when fluid-solid coupling is important. Thus, taking

t For a thick-walled cylinder, the boundary condition at the inner surface, t, = —p, can be significant. This
condition is not compatible with the thin-shell approximation ¢, = 0.
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Fig. 4. Total hoop stress distributions in poroelastic cylinder wall.

advantage of previous work in shell theory, we will develop an asymptotic solution for
general poroelastic shells of revolution. But first, it is advantageous to express the governing
equations in matrix form (Steele and Skogh, 1970). Here, we consider quasi-static motion,
i.c. incrtia is neglected, and so, given the surface loads, eqn (12), can be integrated a priori
to obtain F. Then, after some manipulation, eqns (3), (4), (5), (10), (12) and (15) can be
written in the nondimensional form

where

—ty'+A-y =ca+b,

y =Mz Hy.h'

is the solution vector (T denotes transpose) and

COMPLIANCE

25

A = A0+8A| +61A3,

a

a,+ea,,

=& 'b_,+by+cb,.

=
|

—No fluid (p=1)

— p=
--- p=0
BC #1
10 100

FREQUENCY

Fig. 5. Effect of inertia on compliance h/p| of poroelastic cylinder.

(36)

(37)

(38)
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In these equations,

0 s, 0 0 1—v 0 0
0 0 rol r 0 1-v 0 0
A, = A= - :
1 0 0 r 0 0 v 0
0 —5, 0 0 0 0 v
0 0 r* 0
. .10 0 0 o
A, =(1=v)(r)’ 00 0 0
01 0 o
0 — (1 —v)cos ¢BaM/(rsin ¢.)
—(1—=v)BaNr 0
2 BaM CME 0 '
0 (1—=v?) cos ¢ BaN
b., = Vcos¢[1.0,0,0]",
b, = (py—vVsin¢/r[0.1,0,0]",
b, = — (1 =v*)¥s, cos $[0,0,0, 1]", (39
where
s, = sin¢/sin ¢, (40)

and subscript ¢ indicates a reference value at a shell edge. The nondimensional fluid equation
(20) is

Piz: = Pr+f+ :g' (4|)
where eqns (21), with (3),, (4), (10) and (15),, give

fs. 1) = C{‘liz- [Vsin P +c<H§:{Z - BaN)] +(1=v) Ir'}

g(s. 1) = Czu:(x'+ E}:%g:) (42)

ASYMPTOTIC ANALYSIS

With & = (¢/r;)}? being a small parameter for a thin shell, an asymptotic solution can
be found in the form of the WK B-type expansions

Y= E‘ly-,+y0+€y|+“'+C“m/‘(5’o+55’|+"')-
Ay = Ay +&x, 4+ -+ @y +ex, + ),

A=A0+€A|+"'+e:“”£(80+65|+'"); (43)

where A = (p. M, N, [, g). In these equations, the terms y,, «,, A, etc., are functions of s,
and {(s) is a decay function. Substituting eqns (38) and (43) into (36) and equating
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coefficients of like powers of ¢ in the usual manner provides the series of interior shell
equations

Ay =b_y,
Ap yo=Dbo+y_  —A "y_\,
Ay'y, =b +y,—A Yo—Ary_ +a,

(44)
and powers of ¢e** give the edge-zone equations
(Ag=EDyo =
(Ag=$'D ¥, =¥o—A;"¥o+3,.
(Ag=ED 2 =51=A " § Ay yot+d,,
: (45)

These relations show that the effects of the fluid enter at the level of the first-order terms
{second approximation).
Similarly, substitution of eqn (43), into (41) provides the fluid cquations

P, = Pr,+fut G

P, = i, +fot 24, (46)

forn=0,1,2,..., where egns (42) give, for the first two orders,

i : cos ¢ hy,
Jo= [D(Vsln([)+if ‘Smff%)-{““ —;)'r J

go = Cay”\,
j‘u = C(l "V)/;U/r'

go = Cal',

fi = c[ - (H., cosé —-BzNu>+ Ll‘f/,,],
no, r

= Cal ¢4 S8 %0
g = Ca(zw oy r)
a’( . cos¢ . l—v
jl = C[F(H - —‘(5; —'BﬁNo)'f' ";",;l:l‘
. Cos a
g1 = Ca (Xa+s i o2 ks ) )

Zero-order shell solution

For the interior solution, the expansion (43), suggests that we lump the O(¢™') and
O(c") terms of y together for a *‘zero-order™ shell solution. Then, with eqns (39), the first
two of (44) give the interior shell terms
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y., = Vsing.cot ¢[0,1,0,0]",

—['2 (’3 )leoomT 48
)’o-’mp.-— r_.+v sind)["’]' (48)

The corresponding edge-zone solution is given by solving the eigenvalue problem (45) .
The eigenvalues are £’'(s) = A,, where

P2
Al=<i—t)-(l+i), Ar= A5 Ay=—An Ar= —AS. 49)

with superscript ¢ denoting the complex conjugate, and the corresponding eigenvectors are
vi = [= Ao L(AF?), —Aifse. 1] (50)

For a thin shell (¢ « 1), the edge zone near a sufficiently steep edge is so narrow that
r and ¢ change little within this region (Steele and Skogh, 1970). Thus, we can take
r =5, = | in the edge zone. The A,, therefore, are approximately constant and £(s) = A;s.
Furthermore, near a shell lower edge, the A, and A, terms decay toward the shell interior
(s < 0), and so the solution near this edge can be written [see eqns (43)]f

y=e&" 'y- 1+Yotey +-- '+CA"“(5’0+55'| +o )+ (Fo ey o),
ay =g teay+-0 +eM @y + ek, + ')+CA"‘M(&0+8&1 +-00),
A=Ag+ed +  +cM By +eD, + )+ By +eA, +- ). (s

Note that we now associate hat terms with A, and tilde terms with A,
The zero-order edge-zone terms for the shell can be written as (Stecle, 19764)

Yo = ‘?(»(-")Vlv Yo = ‘70(-")"2- (52)
where d, and d, are complex functions of s. These functions are determined by the condition
that the right-hand side of eqn (45), must be orthogonal to the eigenvectors p; of the

transpose of eqn (45), (Steele, 1976a,b), i.c.

P '(S';)_AI '5’0'*'&0) =0,

P2 (Yo— A Yo+ay) =0, (53)

where
(Ag—=ADT-p, =0 (54)

gives
p=[=so/AL AP, —s,/A 1T (55)

Inserting eqns (39). (49), (50), (52) and (55) into (53) and noting that p,* v, = 4 (all i) yiclds
the differential equations

dy = B,(s)do+ Ba(s), dp = B,(5)dy+ B:(5), (56)

where

t For an elastic deformation (no fluid low). y must be real, and the §, and §, terms can be combined into a
single set of edge-zone functions (Stecle and Skogh, 1970).
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. - 3r s cos ¢
B =B ="y + o = e
s ~ ¢
. | (5,4 .. S . .
B,(s) = 4( 'd;\'lgm —Aridg + /\wl 1(;1‘%4).
~ | 5,2 .. Sy . .
By(s) = 4< “:\é” —Asridy, + /—\%103’104) (57)

in which the %, and #,, are components of the vectors &, and &,. respectively. Equations
(56) are to be solved for d,(s) and d,(s) subject to the appropriate edge boundary conditions.
Within the narrow edge zone, however, d, and d, change little and can be taken as complex
constants. Thus. eqns (56) need not be solved, but they are needed for the O(¢) terms.

Zero-order fluid solution

With the zero-order shell terms known, the first four of eqns (47) provide fi. go. fu. Ga
(with ¢’ = A ). They also give f, and g, if hats are replaced by tildes and & = A,. Then,
eqns (46) for n = 0 can be solved for pr,. pr,, and, with hats replaced by tildes, g, . Since
these equations have the same form for each term in the expansion for p,, the solution in
Appendix A is casily adapted, with the appropriite subscripts, hats and tildes placed on all
quantitics. In addition, care must be taken to apply the appropriate boundary conditions,
For p;,. the conditions of cqn (A1) apply, while iy = 0 and j;, = 0 must replace conditions
(D) and (D), i.e. g, = 3, = 0 for these terms, Then, eqn (39) for a, gives a,,., 2, and &, [sce
cqn (51),] with Ny, Ny, Ny, M, M, and M, given by eqns (A9).

First-order shell solution
Next, eqn (44), yiclds the O(¢) interior shell term

y, = [Bad . 0, %, — (1 =v)BaN,/r]". (58)
where
= —Ging) [vrpy = Veotd+(rrap. = Vrijr)].

To find the corresponding edge-zone terms, we express the solution as a lincar com-
bination of the cigenfunctions (Steele, 1976a) :

Vo= Y dsw. y, =Y d(sv. (59)
i= il

Substitution of these expressions into (45),, dotting both sides with p,, and noting that
piovi=00#j)and Ayv, = Ay, gives

s P (Yo—A Y+ L~
I e e e e = 2, ‘4 s
d, AN =AY ( 3,4)

_I’:'(;;)—i\l';u‘*'&o) - )
d = HA Ay =13 (60)

The indeterminate functions (in these equations) d, and d, are taken as complex constants
in the boundary layer to be determined by thg boundary conditions. With eqns (39), (52).
(56). (57) and (60), Appendix B gives the d.(s) and d(s5) explicitly in terms of known
quantities.
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First-order fluid solution

Solving eqns (46) for n = 1 gives the first-order fluid terms. As in the zero-order fluid
solution, the solution in Appendix A can be adapted easily. In this case, j, = §. = 0 must
be used for py,. p, and p .

CLAMPED SHELLS WITH OSCILLATING PRESSURE

Analysis

The asymptotic solution now will be specialized to the case of a pressure vessel with
ends clamped to rigid circular plates. The internal pressure is j, = p. = p(1) = p,e*' and
P> = p, = 0. and we seek the steady-state response. The boundary conditions at each edge
are h = y = 0, and. at the lower edge. eqns (37) and (51), give

s=0: e 'h_+hy=¢"Y 1 +%s=0.
byt hyt iy = Yo ¥ Tt T =0 (1= L2...), (61)

where, again, the O(¢ *') and O(&") terms are taken together. Note that a general boundary
condition on H could not be satisfied otherwise [see eqns (43), and (48)].

First, eqns (1), and (12), give V' = pr/2, and eqn (48) provides the “membrane™
solution y _, and y,. Next, noting that r = 5, = | at a shell edge, we substitute eqns (48)-
(50) and (52) into the first line of (61) to find

do = di = = (ho) (1 +)/2. (62)
where (i), is provided by the edge value of y,. The resulting zero-order shell solution,
which contains no fluid-flow effects, is well known,

With y,. y, and y, now known, eqns (47) give /i, gu.f.,. cte. Then, eqns (Ad) and (A7)
yicld . a4 and d,,, which arce substituted with (A6) into (AS) to give (for 1 - )

(/'n()i /'nl)v An(l) = Gn X (“n()‘ ‘}nl)' ﬁnl))' (()3)

where G, is provided by egn (28),. The zero-order fluid solution is compicted by putting
(63) into (A9) to obtain N, M,, N, etc., and eqn (39), yields

At 0
A3 — (1 =v)BaN,/r
2y = 2| (I-v) o/ 64)
2yy BaM
Xos 0

with similar cxpressions for &, and %,. [n addition, (63), (A1) and (A2) give p,. and, with
=0, p, and py,.

Next, eqn (58) gives y,. which contains fluid coupling terms. Then, (50), (59) and (B1)
give ¥, and §, with the complex constants d, and d- to be determined with the boundary
conditions (61) for n = 1. These conditions become

S d+d)=—)..
1=

Y A +d) = (X)) (65)
=1

whose solution completes the first-order shell solution.
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Fig. 6. Comparison of asymptotic and closed form solutions for compliance magnitude and phase
far from ends of poroelastic cylinder.

Finally. to obtain the first-order fluid solution, we compute f,. ¢.. f,. etc., from eqns
(47) and a,,. 4,, and a,, from (A4) and (A7) with g, = p, = 0 for all terms. Substitution
into (AS5) with (A6) yields (for ¢ — a0)

(A A A)) =G, x(ay,. G0, d,1). (66)

Then, eqn (A9) gives Ny, M, N, ctc., and (66) and (A2) with ¢y =0 provide p . fiy, and
fr,- This completes the solution to O(x).

Results

Here, we show results only for the casc of a cylinder. As shown in Figs 6 and 7, the
validity of the asymptotic solution is limited primarily to frequencics below the transition.
In addition, while the (asymptotic) compliance shows the correct qualitative behavior for
high frequencics, the phase does not.

As the clamped shell edge is approached from the interior, the resultant force due to
the fluid decreases due to the decreasing radial stretch (Fig. 8). At the edge, however, where

—— Closed—form solution BC #1
------ Perturbation solution

10 »

Fig. 7. Comparison of asymptotic and closed form solutions for fluid pressure distributions fur from
ends of poroelastic cylinder.
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S
[ — M BC #2

a | N
D T
Z
S op -2 w=0.4
(o
~N
=

-5 - 1 1 . 1 . s
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Fig. 8. Axial distributions of fluid stress and moment resultants near clamped end (x =0) of
poroelastic cylinder (asymptotic solution). [x = s*/(2" %) = s/(2rc)"2]

bending is strongest, this resultant turns upward again. The effects of bending on M are
not as significant. In addition, for the cases studied here. the fluid effects in the edge zone
have little effect on the total shell resultants (not shown). Thus, at least in the shell problem
studied in this paper, the fluid affects membranc more than bending behavior.
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APPENDIX A

Fluid solution
This appendix presents the solution to the nondimensional fluid flow equation (41) for combinations of the
(nondimensional) boundary conditions (BC)
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== p=p0 ()

pf.: =0 (”)-
= pr=pas 0y (1D,
pf..' =0 (lv)~

(A1)

where g, and j, are prescribed surface pressures for permeable shell surfaces and conditions (l) and (IV)

correspond to impermeable surfaces. A series solution to (41) is

(5.2, ) = (5.2 N+ T A, (5. 09,(2),
in which
Y20 = +0, 207 (5. 0+ (2 +:2)p:(5.0)
with
0.5, 05 -1, 1 for BC (D~(I1I)
(v 608 = | L, 0. 0. 0} for BC (D-(1V)
0. 0. 0. 0 for BC (I1)—(1V)

The eigenlunctions ¢,(2) and the cigenvalues 4, are given in Table 3.
The coefficients in eqn (68) are given by

Aals) = cy(5).

A (s 1) = (',,(.\')G,(l)+j G (t=t)i,(s.t)de, n=1.2,...,

(#1).
(#2).
(#3).

(AD)

(A3)

(Ad)

(AS)

where dot denotes differentiation with respect to ¢ and the ¢,(s) are to be determined by the initial conditions.

(For a steady-state solution, ¢, = 0). In addition,
G.(1) =¢ .

is the relaxation function and

(s, 1) = =2 J[n]/(.\'. )+ f(800) + 2g(s, O () dz
= =27 DO (S Fy+ 0,5 + gD,

where | = j[’f,,,./'und g are provided by eqns (21), and
% = J¢"f ds

as given in Table 4. Finally, substitution of eqn (A2) into (16) yiclds

N = =[S A0 + %)
AI = —a:[EA,,‘bf,“'i-‘i‘"’].

where Table 4 gives

S J‘wz“ de.

APPENDIX B

First-order shell terms
For a general shell of revolution, the cocflicients in eqns (59) are

d, = complex constant,

dy = — (7 (r' +s, )+ |_'1 + 3+ 11 +:—~l-+i:i

2 8(")' @ L) (.,) ol [T ) (,)| 04 |-

] -1+ s 12

dv = 5557 T o+ [( ) gy + (14 8)day + (1 =)oy +i(2) g4l
-1+

d, = 33t ”0" + 2 [l(’) P+ (—i)dar — (1 +8)d0s —(2)" ]

(A6)

(A7)

(AB)

(A9)

(A10)
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