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Abstraet-A linear theory is developed for axisymmetric deformation of thin poroelastic shells of
revolution. With lluidsolid cl1upling included through Bioes consolidation theory. results are
pn:sented for cylindri~'al shells with an oscillating intern,t1 pressure and various surface boundary
conditions l'n the lluid. First. the efTects of Iluid Ilow and shell inertia on the stretching behavior
are studil-u through a Sl·p.mllion of variabll:s solution. Then. the hcnding behavior near a clamped
edge is examined through an asymptotic solution of a matrix form of the governing equations. The
results show that the asymptl'tic solution is accurate in the low frequency range. when the loading
time is large compared to the consolidatll'll time. In addition. for the examples studied. the lluid
IlllW inlluenl'Cs the 111t:ll1brane nlllrt: than the bending behavior. but damping due tollow resistance
is lill1ilt:d near reSOn;lIKe.

INTR()[)UCTION

Many biological structures. such as hearts. blood vessels and bladders. can be trc.tted as
l1uid-saturated porous shells. Analyses (If these and relatcd cnginccring problcms would be
facilitated by a poroelastic shell theory. which apparcntly is not yct available. Laying thc
foundation for morc general theories. this paper presents a set of lincar govcrning cquations
for axisymmetric deformation of thin poroelastic shclls of revolution.

Relatcd work based on three-dinll:nsional mixturc thcory has focuscd on nonlinear
diffusion through thid-walled isotropic cylinders (Gandhi 1'1 ill.. 19S7), orthotropie
cylinders (Dai 1'[ ill., 1991) and transversely isotropic spheres (Dai and Rajagopal, 1990).
In addition. using thc linear wnsolidation thcory of Biot (1941, 1962), Kcnyon (1976)
studicd l1uid-saturatcd poroelastic cylindcrs subjectcd to stcady .tnd stcp pressure loads,
and Jayaraman (19XJ) cxamined cylindcrs with an osdllating intcrnal pressure. In two­
dimcnsional formulations, Rajagopal t'l ill. (19XJ) dcrivcd nonlinear mcmbrane cquations
from the theory of mixtun:s, and Taber ( 1992) gcm:rali/cd the one-dimcnsional analysis of
Biot (1964) to obtain a lincar platc thcory based on consolidation thcory.

The prcscnt formulation extends and combincs the linearized vcrsion of the nonlinear
thcory given by Rcissncr (1950) for shells of revolution and the linear thcory for poroelastic
plates given by Tabcr ( 1992). The shell thcory is bascd on the following assumptions:

(I) Thc shcll is "thin", i.e. R/Ii, » I. where R is the smallest midsurface radius of
curvature and It, is thc shell thickncss.

(2) Displacemcnts arc small comparcd to the shell thickness.
(.1) Normals to thc middle surface or thc solid skeleton (: = 0) remain straight and

normal during deformation. (Transvcrse shcar deformation is ignored.)
(4) Thc plate is in a statc of approximately plane stress, i.e. thc (olal stress!: = O.
(5) In-plane fluid-velocity qrculil'f/fs relative to the solid arc small compared to the

transverse fluid-velOl.:ity gradient.

The first four assumptions ;lre commonly employcd in deriving shell theories, and the
significance and validity of the last assumption arc discussed by Taber (1992).

Based on this theory. results arc presented for shclls with oscillating internal pressures.
Using a separation of variables solution. we first explore the membrane behavior of cylin­
drical shells with end eflccts ignored. Next. the governing equations are expressed in the
form of a lirst-order vector equation, and an asymptotic solution is developed using the
procedure of Steele and Skogh (1970) for shells of revolution. Results arc given for a
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clamped cylinder with various surface boundary conditions. and the two solutions are
compared in the shell interior.

POROELASTIC SHELL THEORY

In deriving the governing equations. our procedure is similar to those of Reissner
(1950) and Taber (1992). Thus. here we omit some of the specific details. with the interested
reader referred to those papers.

Geometric relatiolls
Consider a thin poroelastic shell of revolution with axis of symmetry y (Fig. I). Let

u(s. =. t) and ur(s. =. t) represent the displacements of the solid and fluid. respectively. where
s is the meridional coordinate along the middle surface. =is the distance from this surface.
and t is time.

During an axisymmetric (torsionless) deformation. a middle-surface element at a radius
r and meridional angle c/J undergoes a displacement u(s. O. t) = \lOC: + IIC,p = hc, + C·C.. and a
meridional rotation X. (Figure I shows the unit vectors cr') The geometry gives the relations
between the displacement components

( I )

Under assumptions (I) -(3). the strains in the solid skeleton are

(2)

where the middle surface strains are

(3)

and the curvature measures are

y

Fig. 10 Poroclastic shell geometry.
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/(,p=x'. /(~=ICOSrP/r

3L!7

(4)

with prime denoting differentiation with respect to s. In terms ofdisplacements. the rotation
tS

1= ulr,-w'. (5)

where r, and r~ are the meridional and circumferential radii of curvature. respectively. and
the geometry gives

(6)

Here. we also define the fluid filtration

(7)

and the solid and fluid dilatations

(8)

with rPr being the porosity and (!: the transverse normal strain.

Eqlli/ihrillm
In terms of the total stresses T,(S.::. t) (per unit area of bulk material). the stress and

moment resultants arc (Fig, I)

(N.p.N".Q) = f(T.p.T".T.pJd::.

(M.p. M,,) = f(T.p. TI,)::d::. (9)

where f == f\~/2' Following Reissner (1950). we express the equilibrium equations in terms
of the horizontal and vertical components of the stress resultants

1/ = N.p cos cjJ +Qsin cP. V = N.. sin cjJ- Qcos cjJ

and the (middle) surface tractions

( 10)

(II)

where P: and P.p are the normal and tangential loads per unit bulk reference-surface area,
Then. the equations of vertical force. horizontal force and moment equilibrium are

(rV)' = -rpl'.

(rlf)' = N"-rp,,.

(rM,p)' = M" cos cjJ +rQ. ( 12)

Comtitutit,(! relations
In terms of the total stresses and the fluid (pore) pressure Pro the three-dimensional

constitutive relations arc (Biot and Willis. 1957)

T.p = 21'(!,p + i.e - apr.

TI, = 21leo + i.e - apr.

$AS 29:24-£
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r~ = '2111::'~ + ;.1::'- 'Xpr,

PI = F(~-:xl::'), ( 13)

where ;. and II are the Lam~ constants for the solid skeleton, :x characterizes the com­
pressibility of the material comprizing the solid skeleton relative to that of the drained
skeleton, and Fis a modified fluid modulus [see egns (32) and (33)]. Biot and Willis (1957)
showed that c/>r :!i; :x :!i; I and that, for incompressible solid and fluid components, 'J. = I and
F =x. Note also that the fluid-solid coupling disappears if 'X = 0 (no pores) or if Pr = 0
(no fluid).

For r~ = 0 (assumption 4), eqn (13)-' [with (8) d is solved for I::'~. which is then substituted
into (13) I.~ to yield

(14)

In thesc equations, Young's modulus E, Poisson's ratio \', and B arc material constants for
the drained solid skeleton (Pr = 0) (see Table I). After substitution of egns (2) and (14)
into (9), integration over the shell thickness gives

EIt,
No = , (1:0 + \'I:,~) + lJ'XN.1-\,-

M,~ = EIt,C2(K,~ + I'Ko) + IJ'XM.

Mo = EIt,c~(K,,+\'K'I,)+lhM.

where c = It,/[ 12(1 - \,2)]1 2 is the red uced shell thick ness and

arc the hydrostatic force and moment resultants due to the fluid,

( 15)

( 16)

F1uitl.lloll'
In three-dimensional consolidation theory, the Ilow of viscous Iluid through a porous

clastic solid is governed by Darcy's law (BiOi. 1941. 196'2)

Taoh: I. Material codlkients

E ~II(;. +II)

t -,,' ;.+2/1

2)1 I 2,'

B = ;'+21
'

1 "

k
h= ---

11.11

I.
\' = .

2(i.+JI)

:x' I
II ='-'1 +.

1.+_11 f

:xBc= _._.-
fl
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(17)

where k is the intrinsic permeability, ilr is the fluid viscosity, and dot denotes differentiation
with respect to time. Taking the divergence of eqn (17) and using eqns (7) and (8) gives

k, oJ

-V·Pr = 1,.
ilr

(18)

Next. substituting eqn (8) I and the expression obtained by solving (13) J for e: (with t': = 0)
into (13)~ gives

( 19)

where f3 is defined in Table I. Finally, assumption (5) and eqn (17) imply that the term Pr.::
dominates V~Pr, where comma denotes differentiation with respect to the follower coordinate
[see Taber (1992)]. Thus, putting eqns (2) and (19) into (18) yields the fluid flow equation

where

KPr.:: = Pr+J+=iJ,

f(s. t) = C(I:", +1:/1).

.q(s, t) = C(",/> + "/I)

(20)

(21 )

and the effective shell permeability K and the material parameter C are given in Table I.
As shown in the plate problems considered by Taber (1992), strong transverse gradients

in Pr C:1n occur. Thus. eqn (20) is not integrated to produce a resultant form. Solutions to
this equation for various surface boundary conditions are given in Appendix A.

CYLINDER WITH OSCILLATING PRESSURE

Analysis
The governing equations for a poroelastic cylinder arc derived by setting cP = rr/2.

r~ = r = constant, and r I -> 00. Then, combining eqns (I), (3). (4), (5), (10), (12) and (15)
yields

£1 '/"" EII,/ v V B (M" I-V N ). I,e· I +-,- I = P" -' + IX - - - •
,- r r

(22)

For a. = O. this equation reduces to the standard cylindrical shell equation.
To gain insight into some fundamental behavior, we study a cylinder with a harmon­

ically varying internal pressure p(t). The ends of the cylinder are closed (V = pr/2 from
'Ixial equilibrium), but end effects are ignored. In this case, axial derivatives vanish, and,
with transverse inertia included in p". eqn (22) reduces to

. Ell. ( v) (I -\,)
pll+ 7" =P 1- 2 -Ba. -r- N. (23)

where p is the average mass density of the bulk material per unit area of the middle surface.
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Table 2. Nondimensional quantities

( )"
C •

r.= -. R .

;" = ~

IK
r* =­

h,'

Af~
Jf;=­

Eh,c'

x· = r.x

Nv·_-­
, - r.Eh,

I'rRf:pr" = -_..-
Ell,

sin r/l
s~ = slll;P~

R = (r')e u = [12(\ -v')j"

r,* = -­
r e

wh'
U)*=-'

K

HsinrPeH·=--­
r.Eh,

M
,\t. =--

f:£h,c

lRr.
l" ='-, Eh,

•• • _.'r: _
(I' • pIIY'I',.~.I'I.:) = Eh, (p.I'II,'·'I',,~.I'I.')

CR,:
C· = Ell,

Table 3, Eigcnvalucs and cigcnfunctions

S
\"* = -, R

,* = ~, R

vv· =-
Eh,

r* =2
, f:£a

Be '.A. --- .._._ ..__.- -- --- -- -- __._-~- ---

/Ill

(211-1)1l

2

()

()

/Ill

'. ..I.. I,.
cos 2 cos ).::* + sin 2 sin ;.:=*

-------_.---

In terms of the nondimensional quantities defined in Table 2, eqn (23) becomest

p·/i· +". = p.( 1- v12) - 8(%/:( I -I')N·, (24)

where /: = (elr) I;! characterizes the shell thickness.
The fluid stress is given by the solution in Appendix A, to which the following refers,

For an oscillating internal pressure PI = P = poe"'" (P2 = 0), with Po a real amplitude and
U) the frequency, the steady-state solution is taken in the form

(25)

in which the sub-zero terms are complex. Inserting this equation into (24) and (A9) I yields

(26)

t Throughout the remaindcr of this paper [afler eqn (24) and including thc appcndiccs and figures. but nol
Ihe lahles). unless staled otherwise. the nondimensional vari:ables in T:able 2 are used \1';111 Ihe aSI<'risks remOl'eti.
In some c;lses. however. the asterisk is kept for emph:asis, In addition. prime :and dot dcnote differentiation with
respect to s" and I·. respectively,
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Table 4. Terms of fluid pressure solution

3131

Be ~~1l1

C~i.:l" 's:

:! :!(i.:l-'s:

3 0

<1>~ II

U:l-:c<1.f-i.:rJ

- (i..:')- :s(1.~ - i.:rJ

(i..:')- :s(:!s - i.:l'J

s;: sin (i.:':!). c;: cos (i.:/2)

'I'IUI

i(pr+p!)
p,
o

'1"1>

~(p!-pr)

o
o

"where r == r and Table 4 gives cJ>~k) and 'I'~). Furthermore, eqns (A5)-(A7) provide the
n= 0

Ano• with [" and g" given by (3h (4). (15), with N", = V, and (21). For steady state
(t - x). integration of (AS) then gives

(27)

with Ann = 0 and

_ ;W
Gn = ",-,-;-.

t.; + IW

linn = -2[(/l'n+j;,)(I>~n)+0,I'O(I>~1)],

j;, = (lI~j24)C(f'n-2B7I;N,,)+C(I-v)ho. (28)

where the ;'n (=;.:> nre given in Tnble 3. nnd eqn (A4) provides I' and 0,. Now, after
substituting (27) and (28) into (26), the laller equations can be solved for hoand No. The
result is

""1'"

where

No
~- = [87f.( I - v»)
1'0

,[ V "" , ]\ - - - - (I - pw-) ,
2 1'0

(30)

Results
For n cylinder with an oscil1ating internal pressure p(t), three sets of surface boundary

conditions (Be) on the tluid are examined [see eqns (A \) and (A4)]. These conditions cor­
respond to specified internal and external pressures on permeable surfaces (# I). on a
permeable inner and impermeable outer surface (# 2), and on two impermeable surfaces
(# 3).

In choosing parameter values, we first note that 0.+ 2/L)jE = (1- v)j[(1 +v)( \ - 2v»).
and so the relntions in Tables I and 2 give

(31 )

which characterizes the tluid-solid coupling [see eqns (20) and (2\ »). In addition. Biot and
Wil1is (\957) showed that

(32)

(33)
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Fig. 2. Magnitude and phase of compliance (hip) as function of frequency (w) for poroelastic
cylinder with oscillating internal pressure. With end effects and inertia negkocted. results are shown

for thrL'C sets of surface boundary conditions (see eqns (A I) and (A4Ij.

where C'k' ,\ and Cr are the compressibilities of the solid skeleton. the material making up
the skeleton. and the fluid. respectively. Here. we consider an incompressible fluid (cr = 0).
and so

F = [c,(:X-cPr)) -I. (34)

Equations (31) and (34) show that C· is maximum when (X = cPr and. therefore. F = 00.

In this case. the Iluid c1fects grow more significant (C· increases) as the porosity cPr grows
smaller (larger Ilow resistance). Note. however. that eqn (3\) now gives

(35)

which appears as a grouping in the primary Ilow resistance terms of eqns (29) and (30).
Thus. for a given v. due to this constraint on the parameters. the shell thickness parameter
I:. the relative solid compressibility :x. and the fluid-solid coupling coefficient C· have limited
effects on the tli",,'nsionless membrane-type compliance ho/Po. Unless stated otherwise.
therefore. the results in this paper are based on the following parameter values for incom­
pressible Iluid and solid components (Lor = C, = 0) :

1:=0.01, \'=0.\, (X=I. F=oo. p=O.

(Note that. although the solid component is incompressible, v :P 1/2 for a porous skeleton.)
Also. we found that five terms in the series yield sufficiently accurate results for the range
of frequencies studied here.

With inertia neglected. Fig. 2 shows the frequency dependence of the magnitude and
phase of the compliance lin/Po. For BCs # I and # 2, the response resembles that described
by Okuno and Kingsbury (1989) for harmonic loading of a poroelastic slab. At low
frequencies. t the fluid flows relatively freely through the shell wall and has little effect on
the solid displacement. which approaches the elastic value (!lo/Po = 1-\'/2 = 0.95). At high
frequencies. the fluid flows little against high resistance, with the fluid pressure building up
in the wall (Fig. 3). Through most of the wall. however. the pressure is out of phase with
the displacement (and the internal forcing pressure), producing a suction effect as the wall

t Thc ch;mlctcristic "consolidation timc" is t = h!i K. and Table 2 gives w* = mt. Thus. "low frequency"
(small m*) corresponds to a loading time that is large (w small) compared to the consolidation time.
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Fig. 3. Fluid pressure distributions in porodastic cylinder wall.

moves outward. This suction draws the solid skeleton inward. reducing the compliance.
The transition between the low- and high-frequency regions. which occurs when the fluid
flows against an intermediate resistance. occurs at lower frequencies for BC # 2 than for
BC # I. For BC # 3. tluid cannot leave the wall.•lIld the cylinder behaves essentially like
an incompressible shell at all frequencies. with the fluid unahie to flow much and having
little clfect.

The negative fluid pressure at high frequencies (rig. 3) resemhles that found by
Jayararnan (191<3) for a thick-walled poroelastic cylinder with an oscillating internal
pressure. t He described the houndary layers that develop ncar the shell surfaces as the
frequency increases (w = 100 in Fig. 3). For a step pressure load. Rice and Cleary (1976)
discussed a similar phenomenon. When a step load is applied. the solid skeleton instantly
deforms elastically.•lIld the pores open before the fluid can flow. producing the suction
eflcct. For smalltime. the surface boundary conditions on the pressure induce the formation
of the boundary layers. where most of the fluid flow occurs due to the steep pressure
gradients. Note also that the small fluid pressures for BC # 3 contrast with the high
pressures found by Taber (1992) for bending of a poroclastic plate with impermeable
surfaces. This illustrates the difference between membrane and bending behavior. While
little flow occurs during membrane stretching in this case. bending allows fluid to shirt from
the compressive to the tensile side of the wall.

The total hoop stress (Fig. 4) illustrates the combined effects of the deformation and
the tluid pressure. As the frequency increases. the decreasing radial displacement and.
therefore. hoop strain produce a lower "contact" stress. which is the stress in eqn (13h
independent of Pro While the negative fluid pressure increases the total stress in the shell
interior. the peak total stress remains at about the same level as for the case of no fluid.

Finally. Fig. 5 shows the effects of shell inertia for p = I. Near the resonant freq uency
(w = I). the fluid resistance d.tmps the deformation. but the magnitude of the damping is
not dramatic. At high frequencies. the inertia dominates the response. with the displacement
approaching zero.

MATRIX FORMULATION

For general boundary conditions. even for the case of a cylinder. closed-form solutions
such as eqn (29) arc difficult to lind when fluid-solid coupling is important. Thus. taking

t For a thick-walled cylinder. the boundary condition althe inner surface. t, = -fl. can be significant. This
condilion is not compatible with the thin·shell approximation t, = O.
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Fig. 4. Total hoop stress distributions in poroelastic cylinder wall.

advantage of previous work in shell theory. we will develop an asymptotic solution for
general poroclastic shells of revolution. But first. it is advantageous to express the governing
equations in matrix form (Steele and Skogh. 1970). Here. we consider quasi-static motion.
i.e. inertia is neglected. and so. given the surface loads. eqn (12) I can be integrated u priori
to obtain V. Then. after some manipulation. eqns (3). (4). (5). (10), (12) and (15) can be
written in the nondirnensional form

-I:y' +A' Y= I:a+b.

where

y = [M",.J1.X. hr
is the solution vector (T denotes tmnspose) and

a = au+l:a l •

b = c-'b_ I +bu+eb ,.

(36)

(37)

(38)

------ ----- ... _-

25

20w
u
z 15<l::
...J
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10~

0
u

5

0
0.1
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-- p=l
- - -. p=o

Be #1

1 10

FREQUENCY
100

Fig. 5. Effect or inertia on compliance Ih/pi or poroclastic cylinder.
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(n these equations.
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o
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o
o

an =
[

-(I-~)B-XNlr
Bdl

o
[

- (I - ,,) CO~"t"'tI("in "')] ,

(I - v') cos ¢B-xN

b _I = V cos 4>(1. 0, O. O)T,

bn = (p,,-vVsinlPlr)[O.I,O.O)T.

b l = -(I-vz)VS,pCOSl/>[O,O,O. W,
where

S,p == sin lPisin lPc

(39)

(40)

and subscript e indicates a reference value at a shell edge. The nondimensional fluid equation
(20) is

pf.~~ = PI +J+ =.iJ.

where eqns (21). with (3}z. (4), (10) and (15) I. give

{
LIZ [ ( cos ¢ )J "}f(s,t) = e 12 Vsin¢+t: f1

sin
¢c -B-xN +(I-v);,

(
, Xcos 4»

g(s, t) = em; X + --~--:i:- .
r Sin '1'0

(41)

(42)

ASYMPTOTIC ANALYSIS

With r. = (elrz):!! being a small parameter for a thin shell, an asymptotic solution can
be found in the form of the WK B-type expansions

y = r. - I Y_ I + Yo + r.y I + ... + e:c'l/< (Yo + r.Y I + .. '),
an = IXo+r.IX, + .. ·+e:IJ1:«a:O+r.a:1 + ),

d = do+r.d, +. "+e:('Ii«&o+r.&1 + ). (43)

where d = (Pr. M, N, f. g). (n these equations. the terms Yi. IX,. d,. etc., are functions of s.
and ~(s) is a decay function. Substituting eqns (38) and (43) into (36) and equating
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coefficients of like powers of t: in the usual manner provides the series of interior shell
equations

A o ' Y_I = b - I.

Au'Yo = bu+y'_I-AI'Y_I,

Au' Y, =b l +y~-AI' Yu-A~'y -I +2:u,

(44)

and powers of ee~< give the edge-zone equations

(Au-~'I)'yo = 0,

(Ao-~'I)'YI = y~-AI 'Yo+%o,

(Ao-~'I)'y~ = Y'1-A1'YI -A~'Yo+til'

(45)

These relations show that the effects of the fluid enter at the level of the first-order terms
(second approximation).

Similarly. substitution ofeqn (43») into (41) provides the tluid equations

(46)

for 11 = o. I. 2•.... where eqns (42) give. for the first two orders.

go = Car:· I.

I, = C( 1- v)/;Il!r,

fill = Cafi".

. [a ~ ( cos 4> ) I - v ]11 = C
I
') H Il --:---;: - B'1.N" + --·h l •
_ SIO ,/,,, r

(
, cos 4> XIl)

91 = Ca Xo + --;---;: -- .
SIO '/'. r

[
" ~ (. cos 4> .) I - ,. ]11 = C - Ho-;-- -&x.No + ----fir •
12 SIO 4>" r

. C (., ., . cos 4> io)
91= a XO+~XI+-.-'--·'

SIO 4>. r
(47)

Zero-order shell SOllllioll
For the interior solution. the expansion (43)1 suggests that we lump the O(r.") and

O(r.°) terms of y together for a "zero-order" shell solution. Then. with eqns (39). the first
two of (44) give the interior shell terms
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y _, = Vsin¢.cot¢[O, I,O,O)T,

[
'~ (,~) V ] TYo =, ~P=- - +v ~ [0,0,0, I) .

sm'l". '1 sm'l"

3137

(48)

The corresponding edge-zone solution is given by solving the eigenvalue problem (45) ,.
The eigenvalues are ~'(s) = A" where

(49)

with superscript c denoting the complex conjugate, and the corresponding eigenvectors are

(50)

For a thin shell (t: « I), the edge zone near a sufficiently steep edge is so narrow that
, and ¢ change little within this region (Steele and Skogh, 1970). Thus, we can take
, = S<I> = I in the edge lone. The A;, therefore, are approximately constant and ~(s) ~ A;s.
Furthermore, near a shell/owe' edge, the A 1 and A2 terms decay toward the shell interior
(s < 0), and so the solution near this edge can be written [see eqns (43»)t

y = r. - 'y _, + Yu +r.y, + ... +c"'*(Yu +r.y, +, .. ) +e"'··'r.(yu +r.y, + ... ),

au = otu+I;ot, + ... +e'\'·!r.(~u+I:~, + ...) +e"'*(lio +ci 1 + ... ),

!:J. = !:J.u+I;!:J., +"'+e""/'(6u+I:6 1 +. ··)+e",··'(.1u+I;.1 1 +. ").

Note that we now associate hat terms with A 1 and tilde terms with A 2'

The zero-order edge-zone terms for the shell can be written as (Steele. 1976a)

(51 )

(52)

where tlu and ,70 are complex functions ofs. These functions are detcrmincd by the condition
that the right-hand side of eqn (45h must be orthogonal to the eigenvectors Pi of the
transpose of eqn (45), (Steele, 1976a. b). i.e.

where

givcs

p,'(y~-AI'Yu+~u) = O.

P2' (y~ - AI' Yu+cxo) = o.

, ~ T
P, = [-s<l>/A;. A,,-, -s<I>/A" I) .

(53)

(54)

(55)

Inserting eqns (39). (49), (50). (52) and (55) into (53) and noting that p,' V, = 4 (all i) yields
the differential equations

(56)

where

t For an elastic deformation (no fluid now), y must be real. and the 1, and y, terms can be combined into a
single set of edge-lone functions (Steele and Skogh. 1970).
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cos c/J

2rsin¢o'

(57)

in which the cloi and i o, are components of the vectors !X O and i o• respectively. Equations
(56) are to be solved for cio(s) and (/o(s) subject to the appropriate edge boundary conditions.
Within the narrow edge zone. however. cioand e70 change little and can be taken as complex
constants. Thus. eqns (56) need not be solved. but they are needed for the 0«(:) terms.

Zero-order jlllid soilltion
With the zero-order shell terms known. the first four of eqns (47) provide ./;,. 90. ./~,. fio

(with ~' = 1\ I)' They also give lo and .iio if hats are replaced by tildes and ~' = I\~. Then.
eqns (46) for 11 = 0 can be solved for Pf". Pf". and. with hats replaced by tildes. fir". Since
these equations have the same form for each term in the expansion for Pro the solution in
Appendix A is easily adapted. with the appropriate subscripts. hats and tildes placed on all
quantities. In addition. care must be taken to apply the appropriate boundary conditions.
For PI'", the conditions of eqn (A I) apply. while Pr" = 0 and h, = 0 must replace conditions
(I) and (III). i.e. p. = p~ = 0 for these terms. Then. eqn (J9) for:l o gives IXo. i o and i o [sec
eqn (51)~) with No. Nih No. Mo. tv;o and ,,,,io given by eqns (A9).

First-ortler shell SOllllioll
Next. eqn (44), yields the 0(1:) interior shell term

(5X)

where

To find the corresponding edge-zone terms. we express the solution as a linear com­
bination of the eigenfunctions (Steele. 1976a):

~ ~

)', = Lci,(.I')v,. )'1 = Le7,(.I')v,.
, ... 1 / ... 1

(59)

Substitution of these expressions into (45h, dotting both sides with I',. and noting that
1'/' v, = 0 (i # j) and Ao ' v, = A,v, gives

• P,'(Y;j-A,'Yo+!Xo)
el, = -----4(A,=I\-r>---- (i = 2.3.4).

e7, = 1~:_~(Y~(~~~-~(i+~j2 (i = 1.3.4). (60)

The indeterminate functions (in these equations) ,il and ,7~ arc taken as complex constants
in the boundary layer to be determined by the boundary conditions. With eqns (39). (52),
(56). (57) and (60). Appendix B gives the ci,(s) and e7,(s) explicitly in terms of known
quantities.
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First-order fluid solution
Solving eqns (46) for n = I gives the first-order fluid terms. As in the zero-order fluid

solution. the solution in Appendix A can be adapted easily. In this case. PI = P~ = 0 must
be used for PI'" PI', and PI','

CLA~IPED SHELLS WITH OSCILLATING PRESSURE

Analysis
The asymptotic solution now will be specialized to the case of a pressure vessel with

ends clamped to rigid circular plates. The internal pressure is PI = P: = p(t) = poeiwt and
p~ = p" = O. and we seek the steady-state response. The boundary conditions at each edge
are" = X = O. and. at the lower edge. eqns (37) and (51) 1 give

s=O: 6-- I"_I+"0=6- I X__ I+Xo=O.

"'I + lin +/1'1 = Xn+Xn+in = 0 (n = 1.2....). (61 )

where. again. the Ov- I) and 0(60) terms arc taken together. Note that a general boundary
condition on H could not be satisfied otherwise [see eqns (43) 1 and (48)].

First. eqns (II hand (12) 1 give V = [1r/2. and eqn (48) provides the "membrane"
solution Y_1 and Yn. Next. noting that r = S,p = I at a shell edge. we substitute eqns (48)­
(50) and (52) into the first line of (61) to lind

(62)

where (IIn)e is provided hy the edge value of Yn. The resulting zero-order shell solution.
which contains no fluid-flow ellccts. is well known.

With Yn. Yn and Yn now known. eqns (47) give./;•. !In.j~ .. etc. Then. eqns (A4) and (A 7)
yield (/nl). tin" and tinl), which arc suhstituted with (A6) into (A5) to give (for t -+ ex)

(63)

where en is provided by eqn (28)1' The zero-order fluid solution is completed by putting
(63) into (A9) to obtain Nn. Mo. No. etc.. and eqn (39)4 yields

[
?:o'] [ 0 ]2

0

= :xo~ -(I-v)BrxNo/r

rx oJ B?:!vlo

:X n4 0

(64)

with similar expressions for in and in. In addition. (63), (A I) and (A2) give [11'11' and. with
I{I = 0'/;1'11 and /;1'11'

Next. eqn (58) gives h which contains fluid coupling terms. Then. (50). (59) and (B I)
give 5'1 and YI with the complex constants til and (1~ to bc dctermined with the boundary
conditions (61) for II = I. These conditions become

4

2: (ti, + t7,) = - (II 1)e.
,- 1

4

2: t\,(tl,+t7,) = (xdc'
1= I

whose solution completes the first-order shell solution.

(65)



31~O L. A. TABER

Closed-form solution
.--_. Asymptotic solutionw 2

en«
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~

o
w
U
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BC *,
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". .........

-- ... _-----.
100

Fig. 6. Comparison of asymptotic and closed form solutions for compliam:e magnitude and phase
far from ends of poroelastic cylinder.

Finally. to obtain the first-order fluid solution. we compute f •. 9t . .11. etc.• from eqns
(47) and 0. 1, a. 1 and (i. t from (A4) and (A7) with PI =P2 = 0 for all terms. Substitution
into (A5) with (A6) yields (for I ..... 00)

(66)

Then. eqn (A9) gives Nt. MI. N" etc.. and (66) and (A2) with'" = 0 provide I'r,.fir, and
til,. This completes the solution to 0(1:).

Results
Here. we show results only for the case of a cylinder. As shown in Figs 6 and 7. the

validity of the ,tsymptotic solution is limited primarily to frequencies below the transition.
In addition. while the (asymptotic) compliance shows the correct qualitative behavior for
high frequencies, the phase does not.

As the clamped shell edge is approached from the interior. the resultant force due to
the fluid decreases due to the decreusing rudial stretch (Fig. 8). At the edge. however. where

10

Closed-form solution
Perturbation solution

Be #'

w=1o ~:--"-""=.":":..=...~..;:;...~.~._:...:..=..':":'.."=",••":":._:':":••'"""'••=. .....-~

-10 w=10

.......

-20
-0.5 0.0

Z

0.5

Fig. 7. Comparison of asymptotic and closed form solutions for fiuid pressure distributions far from
ends of poroelastic cylinder.
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-------------­.. -
"".- .. -

M Be #2
N

5

Q.

"'-Z
L- a ,
0 ,

Q.

"'-
~

-5
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, w=0.4

2
x

3 4

Fig. 8. Axial distributions of nuid stress and moment resultants near clamped end (x = 0) of
poroelastic cylinder (asymptotic solution). Ix == s·/(2' :e) = s/(2re) m.1

bending is strongest. this resultant turns upward again. The effects of bending on Mare
not as significant. In addition. for the cases studied here. the fluid effects in the edge zone
have little effect on the total shell resultants (not shown). Thus. at least in the shell problem
studied in this paper. the fluid affects membrane more than bending behavior.

A("k""''"'('I~ql'n'''nI-This work was supporled in part hy grant 1 R55 IIL46367 from the Niltional Institutes of
lIeillth.
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APPENDIX A

FIlIitl.mlulion
This appendix presents the solution to the nondimensional nuid now equation (41) for combinations of the

(nondimensional) boundary conditions (BC)
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: = - \: Pr = p,(s, tl (I),

Pr.: = 0 (1/).

: = ): Pr = p,(s.l) (III).

pr.: = 0 (IV). (AI)

where p, and p, are prescribed surface pressures for permeable shell surfaces and conditions (II) and (IV)
correspond to impermeable surfaces. A series solution to (41) is

p,(s. :.1) = "'(.I.:, tl +r A.(.u)<p.(:).

in which

with

(A2)

(A3)

0.5.

O.

O.

for BC (1)-(111)

for BC (1)-(1V)

for BC (1l)-(lV)

(# I).

(#2).

(#3).

(A4)

The eigenfunctions <P.(:) and the eigenvalues A. arc given in Tablc J.
The coefficients in eqn (68) are given by

A,,(.,) = c,,(').

A.(.I', t) = c.(,)G.(I) + C' G.(I- r)t;.(s. r) dr. n = I. 2•. , ..
J"

(A5)

where dot denotes diffcrcntiation with reslX'Ct to rand thc c.(.\) arc to be detcrmincd by thc initial conditions,
(For a steady-state solution. c. = 0), In addition.

is thc relallation function and

((.(.\. I) = - 2II"'(.'. :.1) +((s.t) + :y(.\.t)l,p.(:) d:

= - 2[(y,p, + ,'1/;' + /l("~'" + (" ,p, + " 1/;' + .tI)("~" I.

where f I!I f~;'1.1and.tl arc providcd by Clins (21). and

(Il'" = I,..;. .1." _ ..",,_ u ..

as given in Tablc 4, Finally. substitution of cqn (A2) into (16) yields

N = -((lrA"Il~"'+'I'''''1

M = -(J1[rA.("~"+'I''''J.

whcrc Tablc 4 givcs

'1'''':: I"'::'d:.

APPENDIX B

First-ort/t'r s"""lt'rms
For a gencral shcll of rcvolution. thc coefficicnts in cqns (59) arc

il, = complcll const'lllt.

(A6)

(A7)

(All)

(A9)

(AIO)
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J -1-;.,. I ~!~_ -. . •. ~!:_
\ = 2C!)' ~ 1Ia,,' + 8[(-) 211 1+(1-1)2u~+(1 +1)20,1- 1(_) Xu..].

J: = complcJl constant.

JI~J

(Bll


